Learning Temporal Regularized Correlation Filter Tracker With Spatial Reliable Constraint
نویسندگان
چکیده
منابع مشابه
Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking
Discriminative Correlation Filters (DCF) are efficient in visual tracking but suffer from unwanted boundary effects. Spatially Regularized DCF (SRDCF) has been suggested to resolve this issue by enforcing spatial penalty on DCF coefficients, which, inevitably, improves the tracking performance at the price of increasing complexity. To tackle online updating, SRDCF formulates its model on multip...
متن کاملScale-Regularized Filter Learning
We start out by demonstrating that an elementary learning task, corresponding to the training of a single linear neuron in a convolutional neural network, can be solved for feature spaces of very high dimensionality. In a second step, acknowledging that such high-dimensional learning tasks typically benefit from some form of regularization and arguing that the problem of scale has not been take...
متن کاملA Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration
Although the correlation filter-based trackers achieve the competitive results both on accuracy and robustness, there is still a need to improve the overall tracking capability. In this paper, we presented a very appealing tracker based on the correlation filter framework. To tackle the problem of the fixed template size in kernel correlation filter tracker, we suggest an effective scale adapti...
متن کاملAn Evolutionary Approach to Constraint-Regularized Learning
The success of machine learning methods for inducing models from data crucially depends on the proper incorporation of background knowledge about the model to be learned. The idea of constraint-regularized learning is to employ fuzzy set-based modeling techniques in order to express such knowledge in a flexible way, and to formalize it in terms of fuzzy constraints. Thus, background knowledge c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2922416